Chapter 13:
Cognitive Development in Middle Childhood

Prepared by
Debbie Laffranchini
From Papalia, Olds, and Feldman
Piagetian Approach: Concrete Operational Child

- Cognitive Advances
 - Spatial thinking
 - Cause and effect
 - Categorization
 - Seriation and transitive inference
 - Inductive and deductive reasoning
 - Conservation
 - Number and mathematics

- Influences of Neurological Development and Schooling

- Moral Reasoning
Cognitive Advances

Space and Causality

- Better understand space
- Clearer idea of how far things are
- Remember route and landmarks
- Experience is important
- Ability to understand maps & models
- Ability to predict improves for levers and balance scales
 - Influence of physical attributes first
 - Influence of spatial factors second
Cognitive Advances

Categorization

- **Seriation**
 - According to one or more dimensions
 - Length: shortest to longest

- **Transitive inference**
 - Infer relationship between two objects
 - If A is bigger than B and B is bigger than C, A is bigger than C

- **Class inclusion**
 - Relationship of whole and parts
Class Inclusion: Flowers (Age 7/8)

More Daisies or More Flowers
Cognitive Advances

Inductive and Deductive Reasoning

- **Inductive (simple, concrete operations):** experimental thinking, specific to general, statistical probability
 - Second stack of blocks
 - My dog barks, her dog barks, so all dogs bark

- **Deductive (complex, premise, formal operations):** computational thinking, general to specific
 - First stack of blocks
 - All dogs bark, Spot is a dog, Spot barks
Deductive or Inductive?

Ball- Bearings

There are three machines designed to each produce one ounce ball-bearings. One machine is defective and produces 1.1 ounce ball-bearings. You are allowed to only make one weighing of any combination of ball bearings in any number from any machine. How can you determine which machine is defective?
Cognitive Advances

Conservation

- Need to understand identity
- Need to be able to reverse
- Need to decenter
- Three types:
 - Mass
 - Weight
 - Volume
- Concept of horizontal decalage
 - Inability to transfer learning about one type of conservation to other types
 - Child masters different types of conservation at different ages
Cognitive Advances

Number and Mathematics

- By 6/7 years
 - Children count in their heads
 - Count on
 - To add 5 + 3 start counting at 5
 - May take another 2 – 3 years to reverse: subtract
 - Better at solving simple story problems
 - Easier if they know what function to perform and how much original number was
 - Intuitive procedures not taught in school but easier to learn (culture)
Cognitive Advances

Number and Mathematics

• Basic fractions intuitive, complex formulas later
 – Difficulty understanding combinations of fractions
 • $\frac{1}{2} + \frac{1}{3} = \frac{2}{5}$ (initial thinking)
 • Later learn to convert to common denominator $\frac{1}{2} + \frac{1}{3} = \frac{5}{6}$
 • Difficulty with smaller denominator, bigger piece

• Estimation progresses with age
 – Number line estimation, computational estimation, numerosity estimation, measurement estimation
Influences of Neurological Development and Schooling

- Shift from rigid, illogical thinking of early childhood to logical, flexible thinking depends on brain development and experiences.
- Children who conserve volume have different brain waves from those who cannot yet conserve volume.
 - Suggests use of different brain regions.
- Today’s school children are not advancing through Piaget’s stages as rapidly as parents.
 - Indicates too much drilling and not enough hands-on experiences.
Moral Reasoning

• Younger children think the more damage an action causes, the naughtier the child
 – In spite of intent
 • Augustus helping filling his father’s ink pot makes big spot
 • Julian playing with ink pot makes small spot
 • Young children say Augustus was naughtier

• Immature moral judgments center on the degree of the offense, not considering intent
Moral Reasoning

• Piaget: moral reasoning occurs in 3 stages
 1. Rigid obedience to authority (2 – 7 years)
 2. Increasing flexibility (7 – 11 years)
 3. Equity (11 – 12 years and up)
Kohlberg’s Moral Reasoning

- Based on dilemmas
 - Heinz’ dilemma
 - Posed to boys aged 10, 13, 16 and more than 30 years later
 - Heart of each dilemma was justice

- Work began in 1950s

- Later modified by Carol Gilligan to reflect gender value differences, and later Gilligan modified her own assertions
 - Gilligan initially said girls see morality in terms of responsibility to show caring and avoid harm instead of justice and fairness

- Prosocial behavior and volunteer activity
Kohlberg’s Moral Reasoning

• Level I: Preconventional morality
 – Obey rules to avoid punishment or get reward
 – 4 – 10 years

• Level II: Conventional morality
 – Internalized standards of authority figures, want to be “good”, please others, maintain social order
 – 10 years
 – Black/white thinking, many never move beyond

• Level III: Postconventional morality
 – Recognize conflict between standards, make own judgments, based on own principles and beliefs
 – 14 years, if ever
Information-Processing Approach: Attention, Memory, and Planning

- How Do Executive Skills Develop?
- Selective Attention
- Working Memory Span
- Metamemory: Understanding Memory
- Mnemonics: Strategies for Remembering
- Information Processing and Piagetian Tasks
How Do Executive Skills Develop?

• Executive function:
 – Regulate and sustain attention
 – Process and retain information
 – Plan and monitor behavior

• Prefrontal cortex
 – Allows planning, judgment, decision making

• Home environment
 – Quality, cognitive stimulation, maternal sensitivity predicted attention and memory performance in first grade
Selective Attention

• School-age children:
 – Can concentrate longer
 – Can focus on the information they need and want
 – Can screen out irrelevant information
 – Fifth graders better than first graders at choosing what information to keep and what to discard
 • Name of a pet in a movie may be discarded

• Selective Attention:
 – Ability to deliberately direct attention to and shut out distractions
 • Relies on executive function of inhibitory control and suppression of unwanted responses
 – Due to neurological maturation
Working Memory Span

• Increases greatly in middle childhood
• Lays the foundation for wide range of cognitive skills
• Improvements in processing speed
• Improvements in storage capacity
Metamemory: Understanding Memory

- Between 5 and 7 years, frontal lobes develop significantly and reorganize.
- Metamemory improves: knowledge about the processes of memory:
 - First graders know that you remember better if you study longer.
 - First graders know that people forget things with time.
 - First graders know that relearning something is easier than learning it for the first time.
 - Third graders know that some people remember better than others.
 - Third graders know that some things are easier to remember than others.
Mnemonics: Strategies for Remembering

• Devices that aid memory are called mnemonic strategies

• Most common strategy for children and adults: external memory aids
 – Make a list, set a timer, put in physical location

• Other strategies:
 – Rehearsal: conscious repetition
 – Organization: form mental categories
 – Elaboration: imagine a scene or story
 • Young children benefit from our elaboration; older children make their own so it’s meaningful to them
<table>
<thead>
<tr>
<th>Strategy</th>
<th>Definition</th>
<th>Development in Middle Childhood</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>External memory aids</td>
<td>Prompting by something outside the person</td>
<td>5- and 6-year-olds can do this, but 8-year-olds are more likely to think of it.</td>
<td>Dana makes a list of the things she has to do today.</td>
</tr>
<tr>
<td>Rehearsal</td>
<td>Conscious repetition</td>
<td>6-year-olds can be taught to do this; 7-year-olds do it spontaneously.</td>
<td>Ian says the letters in his spelling words over and over until he knows them.</td>
</tr>
<tr>
<td>Organization</td>
<td>Grouping by categories</td>
<td>Most children do not do this until at least age 10, but younger children can be taught to do it.</td>
<td>Luis recalls the animals he saw in the zoo by thinking first of the mammals, then the reptiles, then the amphibians, then the fish, and then the birds.</td>
</tr>
<tr>
<td>Elaboration</td>
<td>Associating items to be remembered with something else, such as a phrase, scene, or story</td>
<td>Older children are more likely to do this spontaneously and remember better if they make up their own elaboration; younger children remember better if someone else makes it up.</td>
<td>Yolanda remembers the lines of the musical staff (E, G, B, D, F) by associating them with the phrase “Every good boy does fine.”</td>
</tr>
</tbody>
</table>
Information Processing and Piagetian Tasks

• Information processing helps explain Piaget’s advances in cognitive processes
• Improvements in memory may contribute to mastery of conservation
• Case, neo-Piagetian theorist, suggests as a child’s application of a concept or scheme becomes automatic, it frees space in working memory
 – Explains horizontal decalage
Psychometric Approach: Assessment of Intelligence

• The IQ Controversy
• Influences on Intelligence
• Is There More Than One Intelligence?
• New Directions in Intelligence Testing
The IQ Controversy

• WISC-III most widely used individual test that measures intelligence
 – Ages 6 – 16
 – Measures verbal and performance abilities
• Stanford-Binet Intelligence Scale also used
• Otis-Lennon School Ability Test (OLSAT8)
 – Kindergarten – grade 12
• IQ scores in middle childhood fairly good predictors of school achievement
 – But may not tell potential
• Tests are timed so penalizes a deliberate child
• Doesn’t measure native ability, infers intelligence from what children know, influenced by schooling, culture, and family
Influences on Intelligence: Genes and Brain Development

• Moderate correlation between brain size and general intelligence, especially reasoning and problem solving abilities
 – Remember: males have more gray matter

• One study found gray matter in frontal cortex is largely inherited, varies widely among individuals

• Another study suggests key is not amount of gray matter but pattern of development of prefrontal cortex
 – In the most intelligent 7-year-olds, cortex doesn’t peak in thickness until 11 or 12 years
 • Opposed to 8 years in children with average IQ

• Reasoning, problem solving, executive function linked to prefrontal cortex, other grain regions with strong genetic influence contribute to intelligent behavior, as well as speed and reliable transmission of messages

• Family, school, culture play a role as well
Influences on Intelligence

Influence of Schooling on IQ

• School increases tested intelligence
 – Delayed starting of school decreases IQ and may not catch up
• IQ scores drop during summer vacation
Influences on Intelligence

Influences of Race/Ethnicity on IQ

- Average test scores for black children historically lower by 15 points
 - Gap has narrowed in recent years
- Average IQ scores of Hispanic children are between black and white children
- While genetics influence individual intelligence, no evidence indicates ethnic, cultural, or racial group differences
- IQ differences largely or entirely attributed to inequalities in environment
 - Income, nutrition, living conditions, health, parenting, early child care, intellectual stimulation, schooling, culture, oppression, discrimination
 - Affects self-esteem, motivation, academic performance
- High SES strengthens genetic influence, low SES overrides it
Influences on Intelligence

Influence of Culture on IQ

- Cultural bias: tendency to include questions that use vocabulary or ask for information or skills more familiar to some cultural groups than others
- Intelligence tests may be built around dominant thinking style and language of white people or European ancestry
 - Minority children put at disadvantage
- Test developers have tried to design culture-free tests
 - Unable to eliminate all cultural influences
- Now produce culture-fair tests
- Sternberg says intelligence and culture are inextricably linked
 - Behavior seen intelligent in one culture may be viewed as foolish in another
 - Defines successful intelligence as the skills and knowledge needed for that society or culture
Gardner’s Theory of Multiple Intelligences

- Gardner, neuropsychologist and educational researcher at Harvard University originally identified 7 distinct kinds of intelligence
 - Conventional intelligence tests tap only three: linguistic, logical-mathematical, and spatial
 - Other four: musical, bodily-kinesthetic, interpersonal, intrapersonal
 - Later added 8th: naturalist
<table>
<thead>
<tr>
<th>Intelligence</th>
<th>Definition</th>
<th>Fields or Occupations Where Used</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linguistic</td>
<td>Ability to use and understand words and nuances of meaning</td>
<td>Writing, editing, translating</td>
</tr>
<tr>
<td>Logical-mathemtical</td>
<td>Ability to manipulate numbers and solve logical problems</td>
<td>Science, business, medicine</td>
</tr>
<tr>
<td>Spatial</td>
<td>Ability to find one’s way around in an environment and judge relationships between objects in space</td>
<td>Architecture, carpentry, city planning</td>
</tr>
<tr>
<td>Musical</td>
<td>Ability to perceive and create patterns of pitch and rhythm</td>
<td>Musical composition, conducting</td>
</tr>
<tr>
<td>Bodily-kinesthetic</td>
<td>Ability to move with precision</td>
<td>Dancing, athletics, surgery</td>
</tr>
<tr>
<td>Interpersonal</td>
<td>Ability to understand and communicate with others</td>
<td>Teaching, acting, politics</td>
</tr>
<tr>
<td>Intrapersonal</td>
<td>Ability to understand the self</td>
<td>Counseling, psychiatry, spiritual leadership</td>
</tr>
<tr>
<td>Naturalist</td>
<td>Ability to distinguish species and their characteristics</td>
<td>Hunting, fishing, farming, gardening, cooking</td>
</tr>
</tbody>
</table>

Is There More Than One Intelligence?

Sternberg’s Triarchic Theory of Intelligence

• Triarchic theory of intelligence: three elements
 – Componential: analytic aspect, solve problems, monitor solutions, evaluate results
 – Experiential: insightful or creative, how approach novel or familiar tasks, think originally
 – Contextual: practical, how you deal with environment, size up a situation and decide what to do: adapt, change, or get out of situation

• Tacit knowledge: not formally taught but necessary to get ahead (Scammon Bay)
New Direction in Intelligence Testing

- Sternberg Triarchic Abilities Test (STAT) new
- Kaufman Assessment Battery for Children evaluates diverse cognitive needs and abilities for children with autism, hearing impairments, language disorders, and various cultures and linguistic backgrounds
- Dynamic tests based on Vygotsky’s theories
- Identifying what a child is ready to learn, dynamic testing may be useful
 - But conventional psychometric tests will remain dominant
Language and Literacy

- Vocabulary, Grammar, and Syntax
- Pragmatics: Knowledge about Communication
- Literacy
Vocabulary, Grammar, & Syntax

- Vocabulary grows, use of precise verbs
 - Hitting
 - Slapping
 - Striking
 - Pounding
- Learn words have more than one meaning
 - Run
- Simile and metaphors common
- Syntax more sophisticated
 - “Caleb promised Debbie to wash the dishes” is understood that Caleb will wash the dishes
- Use of subordinate clauses
 - The boy *who delivers the newspapers* rang the doorbell
Pragmatics: Knowledge about Communication

• Major area of linguistic growth
 – Practical use of language to communicate
• Includes conversation and narrative skills
• Gender differences
 – Boys use more controlling statements and make more negative interruptions
 – Girls remarks are more tentative, conciliatory
• Stories have introductory information about setting and characters, talk about time and place, complex episodes as they mature
Literacy

Reading

- Children identify words one of two ways
 - Decode (sound out, phonics)
 - Visually based retrieval (whole language)
 - Uses contextual cues
 - Popular but research doesn’t support claims
 - Many experts recommend blending of both approaches
- Early reading difficulties may be overcome
 - Social skills associated with achievement
Literacy

Writing

- Writing goes hand in hand with reading
- Difficult for young children
 - Must think about spelling, punctuation, grammar, capitalization as well as forming the letters
- Vygotsky’s model suggests children work in pairs for better solutions to problems and fewer syntax errors
The Child in School

• Entering First Grade
• Influences on School Achievement: An Ecological Analysis
Entering First Grade

- School is a major formative experience
- School helps children:
 - Gain knowledge
 - Develop skills
 - Develop social competence
 - Stretch their bodies and minds
 - Prepare for adult life

- 3 out of 4 US children go to kindergarten
 - Some are eager; some are anxious

- Positive correlates with achievement
 - Interest, attention, active participation
Best Outcomes for First Graders

- At-risk 1st graders (low SES, academic problems, attention problems, behavior problems) progressed when:
 - Teachers offered strong instructional and emotional support
 - Frequent literacy instruction
 - Evaluative feedback
 - Engaging students in discussions
 - Responding to their emotional needs
 - Encouraging responsibility
 - Creating positive classroom environment
Influences on School Achievement
An Ecological Analysis

Self-Efficacy Beliefs

• Bronfenbrenner predicts a child’s characteristics, immediate family, classroom environment, messages children receive from peers and larger culture influences school outcome.

• Students high in self-efficacy more likely to succeed.

• Self-regulated learners set challenging goals and use appropriate strategies to achieve them, try hard, persist, seek help when necessary.

• Students who don’t believe in themselves become frustrated and depressed.
Influences on School Achievement: An Ecological Analysis

Gender

- Girls:
 - Tend to do better in school than boys
 - Less likely to repeat grades
 - Have fewer school problems
 - Outperform boys in national reading and writing assessment
 - Aim for mastery of subject matter
 - Better classroom behavior
 - Adopt more effective strategies for learning
 - Better on times tests
 - Have less confidence in abilities
Influences on School Achievement: An Ecological Analysis

Gender

• Boys:
 – More interested in how smart they look in class
 – Advantage in spatial skills
 • SES makes a difference
 – High SES boys do better than high SES girls
 – Low SES boys did not do better than low SES girls
Influences on School Achievement: An Ecological Analysis

Parenting Practices

• Parents of achieving children create an environment for learning
 – Place to study
 – Books and supplies
 – Set times for meals, sleep and homework
 – Monitor television
 – Show interest in children’s lives
 – Talk with them about school and being involved in school activities

• Parents who are involved in schools have children who do better in school

• Use intrinsic motivation (more effective)

• Authoritative parenting
Socioeconomic Status

• Powerful factor in educational achievement
 – Family atmosphere
 – Choice of neighborhood
 – Parenting practices
 – Presence or absence of stress
 – Stability of household
 – Chaos versus order
 – Can affect parents’ ability to provide an environment that enhances learning

• SES not the only factor in school achievement
 – Households who use intrinsic motivation
 – Social capital: networks of community resources
Peer Acceptance

• Children who are liked and accepted by peers do better in school

• Children who are not liked by peers:
 – Have poorer academic self-concepts
 – More symptoms of anxiety or depression
 – Lower reading and math grades
The Educational System

• Educational philosophies have conflicted
 – “Child-Centered”
 – “Three R’s”
 – “Back to the basics”
 – No Child Left Behind (NCLB)

 • Emphasizes accountability, parental options, expanded local control and flexibility
 • 50 national education, civil rights, children’s and citizens groups have called for substantial changes
 – NCLB emphasizes punishment rather than assistance for failing school
 – Rigid, largely unfunded mandates rather than support for proven practices
 – Standardized testing rather than teacher-led, classroom-focused learning
The Educational System

- Students learn better when taught in a variety of ways.
- Students learn better when emphasizing creative and practical skills as well as memorization and critical thinking.

Sternberg’s Triarchic Theory

- Componential Intelligence: Ability to think abstractly, process information effectively.
- Experiential Intelligence: Ability to formulate new ideas, to combine seemingly unrelated facts or information.
- Contextual Intelligence: Ability to adapt to changing environmental conditions and to shape the environment, so as to maximize one’s strengths and compensate for one’s weaknesses.
The Educational System

School Environment

- Children learn better and teachers teach better in:
 - Comfortable, healthful environment
 - Small class size
 - Especially in early grades
 - Findings are mixed
The Educational System

• Current Educational Developments
 – Social promotion
 • Some loved the change
 • Others warned it could lead to lowered expectations, poor performance, dropping out of school
 • Chicago’s public schools retention policy did not improve third graders’ test scores, hurt sixth graders’ scores and greatly increased eighth-grade and high school dropout rates for retained students
 – Identify at-risk students early and intervene before they fail
 • Alternative schools, programs for at-risk students, smaller classes, remedial instruction, counseling, crisis intervention, summer school
The Educational System

• Some parents home school
 – Legal in all 50 states
 – 1.1 million US students homeschooled

• Some parents choose charter schools
 – 1 million US children attend charter schools
 • Tend to be smaller
 • Have unique philosophy, curriculum, structure, or organizational style
 • Parents generally satisfied
 • Studies on effects on student outcomes have mixed results
The Educational System

Computer and Internet Use

- 2003 91% children and adolescents used computers at home or school
- 59% used the Internet
 - Fewer black, Hispanic, and American Indian children
 - Fewer poor children
- Focus on “visual literacy”
- Children need to critically evaluate information
Educating Children with Special Needs

• Second-Language Education
• Children with Learning Problems
• Gifted Children
Second-Language Education

• 2004 19% of US population spoke language other than English at home
 – Primary language Spanish
 – 5% have difficulty speaking English

• English-immersion approach (ESL): immersed in English in special classes

• Bilingual education: taught in two languages
 – Typically outperform all-English programs in English proficiency
 – Public opinion turned against, enrollment declined from 37% to 17%
 – Eliminated in 2002 as part of NCLB

• Dual-language learning
 – English- and foreign-speaking children learn together
Children with Learning Problems

Mental Retardation

- IQ <70
- Deficiency in age-appropriate adaptive behavior
 - Communication, social skills, self-care
 - Before age 18
- < 1% US children mentally retarded
- 30 – 50% cause unknown
 - Genetic disorders, traumatic accidents, prenatal exposure to infection or alcohol, environment
Children with Learning Problems

Learning Disabilities

• Dyslexia: Famous people
 – Nelson Rockefeller, former Vice President
 – Tom Cruise
 – Whoopi Goldberg
 – Cher
 – Nolan Ryan
 – Jay Leno
 – Albert Einstein

• 80% of children with learning disabilities are dyslexic

• Runs in families
Children with Learning Problems

Learning Disabilities

- Dyslexia most commonly diagnosed learning disability
- Often near-average or higher-than-average intelligence
- Difficulty processing sensory information
- Genetic

- Less task oriented
- More easily distracted
- Less likely to use memory strategies
- Some haven’t been taught properly
- Some are anxious
- Some have trouble reading or hearing direction
- Some lack motivation or interest
- Some have developmental that may disappear
Children with Learning Problems

Hyperactivity and Attention Deficits

• Most common mental disorder in childhood
 – Chronic
 – Inattention
 – Distractibility
 – Impulsivity
 – Low tolerance for frustration
 – Too much activity at the wrong time in the wrong place

• 3 – 7% US school children (disputed)
 – May be underdiagnosed or overdiagnosed
Children with Learning Problems

Hyperactivity and Attention Deficits

• Famous people
 – John Lennon
 – Senator Robert Kennedy
 – Robin Williams
 – Sylvester Stallone

• Genetic, heritability 80%
 – Gene-environment interaction

• Inattention persists after impulse control and hyperactivity declines

• Academic problems, cumulative family stress, troubled peer relationships

• Drugs (not under 6), behavioral therapy, counseling, training
Children with Learning Problems

Educating Children with Disabilities

- 13% of US children in special education
 - IDEA
 - FAE (free appropriate education)
 - LRE (least restrictive environment)
 - IEP (individualized education plan)
 - Due process (if you don’t agree)

- 45% have learning disabilities
- 17% speech or language
- 9.5% mental retardation
Gifted Children

Identifying Gifted Children

- Akira Kurosawa (movie director): backwards
- Sir Isaac Newton (physicist, mathematician, astronomer): did poorly in school
- Thomas Edison (inventor): “too stupid to learn”
- Winston Churchill (British PM): failed 6th grade
- Enrico Caruso (tenor): told he could not sing
- 6% student population gifted
- Some are globally gifted, some are gifted in one area
 - Gardner’s intelligences
Gifted Children

What causes Giftedness?

- Strong intrinsic motivation
- Years of rigorous training
- Naturally occurring endowed ability
- Tend to grow up in enriched family environments
 - Intellectual or artistic stimulation
 - Parents recognize and nurture child’s gifts and promote independence
 - Parents have high expectations, hard workers, high achievers themselves
- Born with unusual brains that enable rapid learning in a particular domain
Gifted Children

Lewis M. Terman and the Lives of Gifted Children

- Longitudinal study of gifted children
 - Identified 1500 California children with IQs of >135 (top 1%)
 - None grew up to be illustrious
 - Lack of close correlation between high IQ and adult eminence
 - Profoundly gifted >180 social and emotional difficulties
Gifted Children

Defining and Measuring Creativity

• Guilford: two kinds of thinking
 – Convergent
 • IQ tests measure, single correct answer
 – Divergent
 • Wide array of fresh possibilities
 – Critique: a child who scores high in creativity on a test may not be creative in everyday life
Gifted Children

Educating Gifted Children

• 68% of schools have special programs for gifted children
 – Enrichment
 • Deepens knowledge and skills
 • Extra classroom activities
 • Research projects
 • Field trips
 • Expert coaching
 – Acceleration
 • Speed up education
Gifted Children

- Julian Stanley: Seeking and Nurturing the Profoundly Gifted
 - Selected even more gifted children than Terman
 - Didn’t use IQ but college entrance examinations
 - Vast majority of children/participants said accelerating education promoted academic progress and social-emotional development
Knowing others is intelligence. Knowing yourself is true wisdom.

-Lao Tse